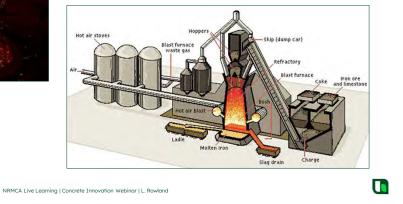
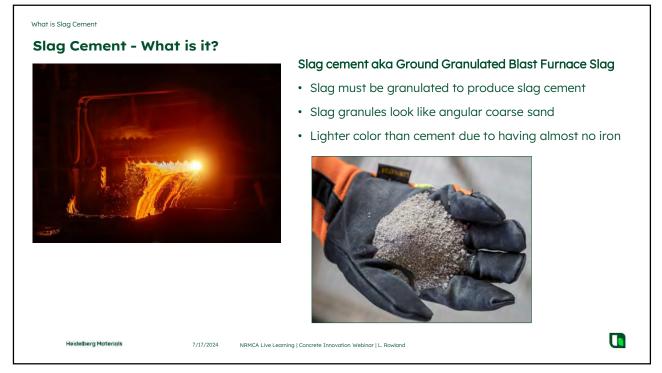

# <text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

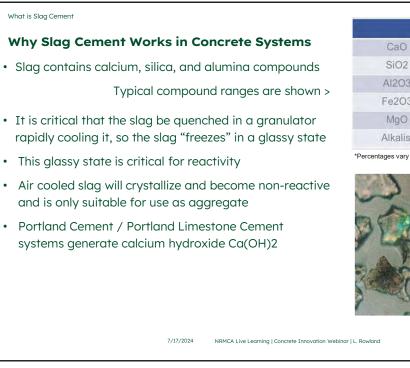
3

# Slag Cement **History of Slag Cement** • Slag cement use in the 1700s, combined with lime to make mortars • The first U.S. production of slag cement in 1896 • By 1901 slag was combined in portland cement @ 30% GGBFS in Germany • In the 1950s, granulated slag was used in the manufacture of blended portland cements in US • First granulation facility in the U.S. to make a separate slag cement was in the early 1980s • US now uses ~ 4-million tons of slag cement annually 7/17/2024 NRMCA Live Learning | Concrete Innovation Webinar | L. Rowland


### What is Slag Cement

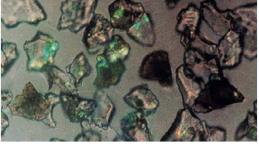

### Slag Cement - What is it?




### Slag cement aka Ground Granulated Blast Furnace Slag

- Blast Furnace Slag byproduct of primary iron production
- Slag can be air cooled to produce aggregate
- Quenching and granulation are necessary process










|          | Portland Cement | Slag Cement* |
|----------|-----------------|--------------|
| CaO      | 65%             | 38%          |
| SiO2     | 20%             | 36%          |
| AI2O3    | 4%              | 10%          |
| Fe2O3    | 3%              | 0%           |
| MgO      | 3%              | 11%          |
| Alkalis' | 1%              | 1%           |

\*Percentages vary based upon the source of slag granules and cement manufacturing



### What is Slag Cement **How Slag Cement Works in Concrete** • Slag cement binds up Ca(OH)<sub>2</sub> by forming Calcium-Silicate-Hydrates (CSH), the crystals that make concrete work Remove alkalis from system, improves resistance to ASR Portland cement concrete system • Increased CSH reduces voids, fills areas around aggregates in system, increasing bonds and reducing pore structure Greater CSH = Increased compressive, tensile, and flexural strengths • The densified concrete is less permeable which helps prevent chemical attack from chlorides and sulphates High-strength and high-performance mixes often use slag mixes for • PC their increased flexural strengths, durability and lower CO<sub>2</sub> PC SCN PC PC PC Portland cement concrete system with slag cement NRMCA Live Learning | Concrete Innovation Webinar | L. Rowland 7/17/2024

9

# What is Slag Cement

## References for Using Slag Cement

### ACI 233R-17 Guide for the Use of Slag Cement in Concrete and Mortar

- · Gives guidance on the use of slag cement
  - Gives overview of material
  - Includes typical replacement rates & applications
  - Gives info on Batching and Proportioning
  - Effects on Fresh and Hardened properties

### **Specifications**

- ASTM C989 / AASHTO M 302 for use as SCM
- ASTM C595 / AASHTO M 240 in Blended Cements
- Canadian Specifications, CSA A3001 Cementitious materials for use in concrete
- Is allowed in cements conforming to ASTM C1157 Performance Spec for Hydraulic Cements





### What is Slag Cement

### Blended Cement i.e. IS(40) Benefits

# Slag granules can be interground with clinker or ground then blended at the cement plant

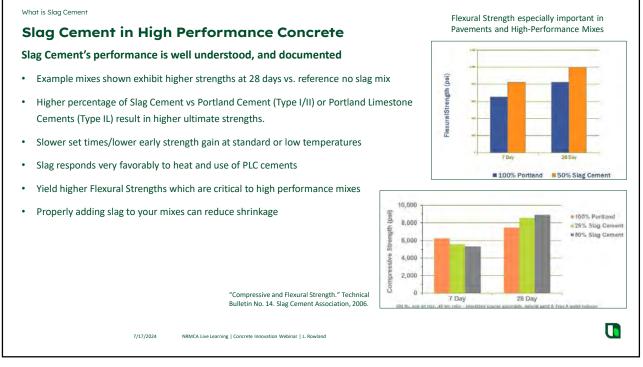
- All the advantages of using slag cement ... plus...
- Quality control managed by cement supplier
- Reduced storage needs, users need only one silo
- Ease of use and simplified concrete mixtures
- Can be combined with pozzolans or limestone in Ternary blends optimizing environmental benefits & performance



### What is Slag Cement

### **Ready Mixed Concrete Benefits**

### Slag in RMC, measurable improvements...


- Better concrete workability and consistency
- More consistent plastic and hardened properties
- Can result in lower admixture doses
- Lighter color resulting in higher reflectivity
- Reduced environmental impacts
- Higher compressive and flexural strengths

### Typical replacement ranges

 Dosage rates in concrete range from 25% to 50% of the cementitious material by mass, with special applications having addition rates of 80% or higher

7/17/2024 NRMCA Live Learning | Concrete Innovation Webinar | L. Rowland





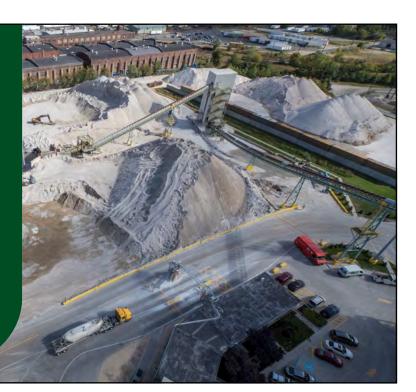
### What is Slag Cement

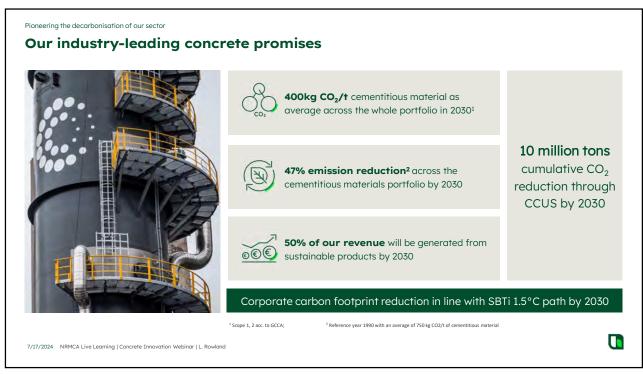
### **Slag Cement in High Performance Concrete**

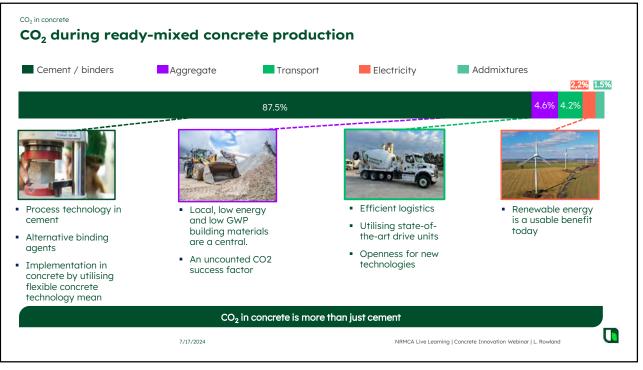
### Slag Cement will increase strengths of mixes

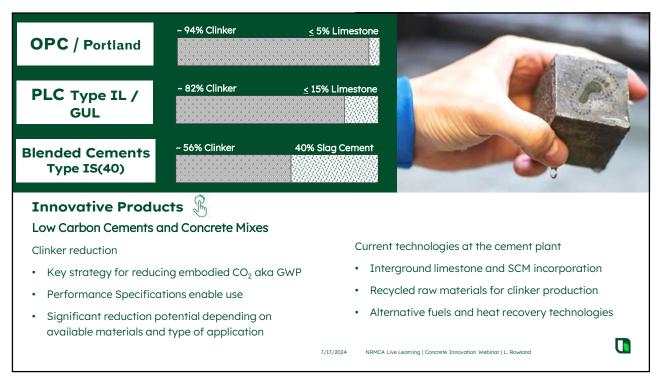
- @ standard curing temps (72° F) slag has slower strength gain
- Catches up/exceeds reference mix @ 14-days in all % additions
- Slag responds very favorably to heat and use of PLC cements

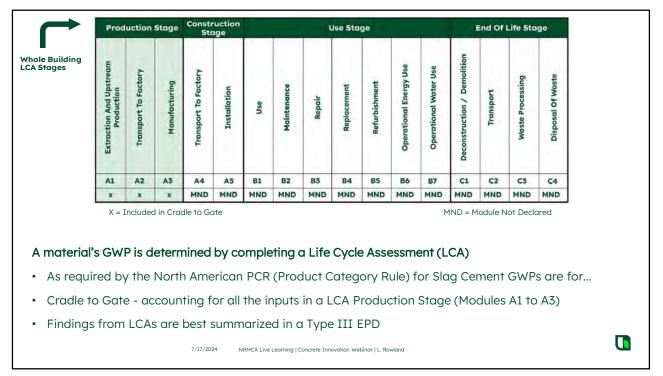
### Example Award Winning Project: TSX Broadway in New York


- Used ~ 10k cubic yards of 14,000 psi mix @ 40% Slag
- 96% of all mixes contained slag
- 93% of all mixes had a minimum of 40% slag replacement
- Slag's use resulted in 3,000 + metric tons of CO<sub>2</sub> savings
- Structural Engineer Severud Associates





7/17/2024 NRMCA Live Learning | Concrete Innovation Webinar | L. Rowland


We use Slag Because it is our Strongest Carbon Reduction Tool


"At Heidelberg Materials, we aim to be the industry leader on the path to net zero concrete."











| Heidelberg<br>Materials                                                                                                                                                                                                          | Environmental Product Declaration<br>(EPD) for Cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Evansvi<br>Declared   | nmental Impacts<br>ille Plant: Product-Spe<br>d Cement Products (six)<br>I; Type IS40; Masonry; Ty |         |           |         | Well G    |            |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|----------------------------------------------------------------------------------------------------|---------|-----------|---------|-----------|------------|----------|
| his cradie to gate Environmental Product<br>eclaration covers ain coment products<br>roduced at the Evanyville Coment Plant                                                                                                      | Environmental Impacts<br>Evanaville Plant: Moduch Saechic Type (III 840)<br>Declared Cement Products (ski);<br>Syne (VIE: Type 1549; Mascray: Type III; OII Weil A; OII Weil G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Declared              | d Unit: One metric tonne                                                                           | of ceme | _         | Coment  | Products  |            |          |
| roduced at the Eventyfile Cement Plant,<br>he Life Cycle Assessment (LCA) was<br>repared in conformity with 150 21936, ISO<br>4025, ISO 14040, and ISO 18044. This (PD<br>intended for business-to-business (b-to-8)<br>udences. | Declared Unit: One mercy turne (d connet           Global Warming<br>Potential societ         Martin data         Connet Matters           841         531         497         641         882         882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                       | al Warming<br>htial (kg c0,-eq)                                                                    |         | Type 1540 | Hasonry | Type III  | CEWERA     |          |
| leidelberg Materials<br>vansvile Gewent Plant                                                                                                                                                                                    | Owner Supplement Networks         COLOR         Data (S)         Data (S) <thdata (s)<="" th=""><th></th><th></th><th>tion Potential (kg CFC-11-eq)</th><th></th><th></th><th>-</th><th>1212</th><th>2.95E-05</th><th>2.95E-05</th></thdata>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                       | tion Potential (kg CFC-11-eq)                                                                      |         |           | -       | 1212      | 2.95E-05   | 2.95E-05 |
| 37 Evansville Rd<br>leetwood, PA 19522                                                                                                                                                                                           | Provide the set of the |      | and the second states | on Potential (kg N-eq)                                                                             | 0.92    | 0.74      | 0.71    | 0.92      | 0.94       | 0.94     |
| PROGRAM                                                                                                                                                                                                                          | Salina Payletan, faail (40). 1004 (10) (40) (10) (10) (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Acidification         | Potential (kg SO <sup>2</sup> -eq)                                                                 | 2.17    | 1.41      | 1.32    | 2.17      | 2.28       | 2.28     |
| OPERATOR<br>National Ready Mixed                                                                                                                                                                                                 | Direct         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.         05.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 19 000 0000 0         | al Ozone Creation Potential (kg O <sub>1</sub> -80                                                 | 36.66   | 22.68     | 21.15   | 36.66     | 38.52      | 58.52    |
| NRMCA<br>CERTIFIED Silver Spring, MD 20910                                                                                                                                                                                       | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                       | letion, nonfossil (kg Sb-eq)                                                                       |         |           | (5) (5) |           | 1.47E-04   | 1.47E-04 |
| EPD                                                                                                                                                                                                                              | Additional detail and impacts are reported on page 5 and 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Abiotic Dep           | letion, fossil (MJ)                                                                                | 757.06  | 475.60    | 44,47   | 757.06    | 793.80     | 793.80   |
| NATE OF ISSUE<br>Invary 13, 2022 (valid for 5 years until Janvar)<br>192 23890-2017 Sustainability in Building Construct<br>NSF POR for Portiant, Biender, Mason                                                                 | in-C-vinormental Decisionation of Building Products: serves as the core PCB<br>y. Montax, and Plastic Sources Centers V3.2: annus as the sub-category PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                       |                                                                                                    | -       |           |         | A         | the second |          |
| Thomas P. Gioria, PhD. 5<br>Independent verification of the declars                                                                                                                                                              | protegory PCR inview was conducted by<br>providential extension entrol + industrial Seelage Consultants<br>Bios, according to 100 21990 2017 and 50 14025 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре | IS40                  | I/II GU                                                                                            |         |           | 1       |           | A A        | 1.3      |
| Manufacture Repre<br>This EPD was prepared using                                                                                                                                                                                 | For soldstowal explanatory material<br>enrastice with floop (Left Houge) provide an enforce (an conj.)<br>le pre-ventiles COCA Tool by Actives Socializable Materials Institutes<br>2019/02/11-), us of the same, July-activesity ICB where soldstable include all relatives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GWP  | 531                   | 841                                                                                                |         | CTAS .    |         | The state | E COL      | in a     |

|                                                     | A1 to A3 Impacts                                                                             |                       |                                                 |                                |                      |                    |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------|--------------------------------|----------------------|--------------------|
|                                                     | • GWP is 147 kg $CO_2 e$                                                                     | eq / met              | ric ton (                                       | 1,000 k                        | (g)*                 |                    |
|                                                     | *Portland Ceme                                                                               | nt indust             | ry averag                                       | ge GWP                         | is 922 kg            | CO <sub>2</sub> eq |
| Industry Average Environmental Product Declaration  | • A3 Grinding = 56% o                                                                        | of GWP,               | Transpo                                         | rt A2 =                        | 43%                  |                    |
|                                                     | Impact category and inventory indicators                                                     | Unit                  | A1,<br>Extraction<br>and upstream<br>production | A2,<br>Transport<br>to factory | A3.<br>Manufacturing | Total              |
| <b>SCA</b>                                          | Global warming potential, GWP 1001, AR5                                                      | kg CO <sub>2</sub> eq | 1.8                                             | 62.7                           | 82.6                 | 147.0              |
| N PERINT                                            | Ozone depletion potential, ODP <sup>2)</sup>                                                 | kg CFC-11 eq          | 2.9E-07                                         | 1.4E-05                        | 1.0E-05              | 2.4E-05            |
|                                                     | Smog formation potential, SFP2                                                               | kg O₃ eq              | 0.19                                            | 33.1                           | 4.28                 | 37.6               |
| ASTW INTERNATIONAL<br>Helping bur world work better | Acidification potential, AP <sup>2)</sup>                                                    | kg SO2 eq             | 8.7E-03                                         | 1.7                            | 2.6E-01              | 2.0                |
|                                                     | Eutrophication potential, EP2)                                                               | kg N eq               | 2.9E-03                                         | 0.08                           | 2.4E-01              | 0.33               |
|                                                     | Abiotic depletion potential for non-fossil<br>mineral resources, ADP elements <sup>3)*</sup> | kg Sb eq              | 1.7E-06                                         | 2.4E-06                        | 6.8E-05              | 7.2E-05            |
|                                                     |                                                                                              |                       |                                                 |                                |                      |                    |

EPDs provide transparency Interpreting Concrete EPDs Cement/Binders are Primary GWP Contributors Product Stage Environmental Product Declaration (EPD) Heidelberg Materials Extraction and upstream Transport to factory Manufacturing production Heidelberg Materials Environmental Product Declaration Mix CA42P15X -37 Leeds Plant A2 A3 A1 orts the impa Ļ Dependent on energy Disproportionately driven by sources – climate and cement (clinker) content Dependent on haul distances and mode of electricity (hydroelectric or transport. How close coal fired)? are aggregate and cement resources? Heidelberg Materials 7/17/2024 NRMCA Live Learning | Concrete Innovation Webinar | L. Rowland

| Counting Carbon Emissions Accounting for Co               | ncrete GWP Calculat                        | ions by Leveraging EF                          | PD Dat                        | a                              |            |
|-----------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------|--------------------------------|------------|
| Apply GWP values to Gene                                  | eric Mix for all mix components            | 5                                              |                               |                                |            |
| • Binder, 350 kg/m <sup>3</sup> "Ave                      | rage" Portland Cement                      | Generic Concrete Mix Global Warming Pote       | ntial 01 - 03                 |                                |            |
| No SCMs                                                   |                                            | Generic Concrete Mix Raw Materials A1          | Quantity<br>kg/m <sup>3</sup> | GWP / Metric ton<br>(1,000 kg) | GWP in Mix |
| "Generic" course and fir                                  | ne aggregate                               | Industry Average Portland Cement (GU / Type I) | 350                           | 922                            | 322.7      |
|                                                           | 33 3                                       | Generic Fly Ash                                | 0                             | 14.7                           | 0.0        |
| Water reducing & Air-er                                   | ntraining admixtures                       | Generic Slag Cement                            | 0                             | 146.6                          | 0.0        |
|                                                           |                                            | Generic Crushed Stone Course Aggregate         | 1,046                         | 4.6                            | 4.8        |
| This Baseline Mix ha                                      | is GWP of 3/4.8                            | Generic Concrerte Sand Fine Aggregate          | 791                           | 2.8                            | 2.2        |
| <ul> <li>Note inclusion of A1 – A3 LCA Modules</li> </ul> |                                            | Water                                          | 156                           | 0.0                            | 0.0        |
|                                                           |                                            | Generic Water Reducing Admixture               | 0.80                          | 1880.6                         | 1.5        |
| GWP for A1                                                | 331.3                                      | Generic Air-Entrainer                          | 0.05                          | 524.7                          | 0.03       |
| GWP for A2                                                | 34.1                                       | Raw Materials Pro                              | duction CO <sub>2</sub>       | Footprint - Total A1           | 331.3      |
| • GWP for A3                                              | 9.4                                        | Material Transport to Concrete Plant A2        |                               |                                |            |
| Mix GWP Total                                             | 374.8 CO2 eq.                              | Summary for Transport to BC Re                 | ady Mix CO <sub>2</sub>       | Footprint - Total A2           | 34.1       |
|                                                           | o, oo=oq.                                  |                                                |                               |                                |            |
|                                                           |                                            | Concrete Manufacturing @ RM Plant              |                               |                                |            |
|                                                           |                                            | Material Handling, Batching & Misc. Op         | erations CO <sub>2</sub>      | Footprint - Total A3           | 9.4        |
| Heidelberg Materials                                      | SCM, Aggregate and Admixture Data via FHWA |                                                |                               | 1                              |            |
|                                                           | Report No. FHWA-HIF-22-032, LCA Pave       |                                                | T                             | otal A1 + A2 + A3              | 374.8      |





| Counting Carbon Emissions Accounting for Concr | ete GWP with EPD Do                                                                | ata for Evansville Portland                                           | l Slag C                      | Cement in I                         | Mix           |
|------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|-------------------------------------|---------------|
| Apply GWP values to Gener                      | ic Mix for all mix componen                                                        | ıts                                                                   |                               |                                     |               |
| • Binder is 350 kg/m <sup>3</sup> Evar         | nsville Type IS(40)                                                                | Generic Concrete Mix Global Warming Potentia                          | I A1 - A3                     |                                     |               |
| No SCMs                                        |                                                                                    | Generic Concrete Mix Raw Materials + Actual<br>Cement GWP Values A1   | Quantity<br>kg/m <sup>3</sup> | GWP / Metric ton<br>(1,000 kg)      | GWP in Mix    |
| "Generic" course and fine                      | e aggregate                                                                        | Heidelberg Materials Evansville Type IS(40) Cement<br>Generic Fly Ash | 350<br>0                      | 531                                 | 185.9<br>0.0  |
| • Water reducing & Air-ent                     | raining admixtures                                                                 | Generic Slag Cement<br>Generic Crushed Stone Course Aggregate         | 0                             | 146.6<br>4.6                        | 0.0           |
| • Evansville IS(40) = - 3                      | 37% vs Baseline Mix                                                                | Generic Concrerte Sand Fine Aggregate                                 | 791                           | 2.8                                 | 2.2           |
| • Note inclusion of A1 – A3                    | LCA Modules                                                                        | Water<br>Generic Water Reducing Admixture                             | 156<br>0.80                   | 0.0<br>1880.6                       | 0.0           |
| • GWP for A1                                   | 194.4                                                                              | Generic Air-Entrainer Raw Materials Pro                               | 0.05                          | 524.7<br>Footprint - Total A1       | 0.03<br>194.4 |
| • GWP for A2                                   | 34.1                                                                               |                                                                       |                               |                                     | 20            |
| • GWP for A3                                   | 9.4                                                                                | Material Transport to Concrete Plant A2                               |                               | To a description of Tools and Tools | 24.4          |
| Mix GWP Total                                  | 237.9 CO2 eq.                                                                      | Summary for Transport to BC Re<br>Concrete Manufacturing @ RM Plant   |                               | rootprint - Total A2                | 34.1          |
|                                                |                                                                                    | Material Handling, Batching & Misc. Op                                | erations CO <sub>2</sub> I    | Footprint - Total A3                | 9.4           |
| Heidelberg Materials                           | SCM, Aggregate and Admixture Data via FHWA<br>Report No. FHWA-HIF-22-032, LCA Pave |                                                                       |                               | Total A1 + A2 + A3                  | 237.9         |

| Apply GWP values to Gen                              | eric Mix for all mix componer | nts                                                                 |                               |                                |       |
|------------------------------------------------------|-------------------------------|---------------------------------------------------------------------|-------------------------------|--------------------------------|-------|
| • Binder is 210 kg/m <sup>3</sup> Ev                 | ansville Type I or Type III   | Generic Concrete Mix Global Warming Potential A1                    | - A3 with 4                   | 0% Slag Cement SC              | M     |
| <ul> <li>+ 140 kg/m<sup>3</sup> "Generic"</li> </ul> | Slag as SCM                   | Generic Concrete Mix Raw Materials + Actual<br>Cement GWP Values A1 | Quantity<br>kg/m <sup>3</sup> | GWP / Metric ton<br>(1,000 kg) |       |
| "Generic" course and fine agaregate                  |                               | Heidelberg Materials Evansville Type I or III +40% Slag SCM         | 210                           | 841                            | 176.6 |
|                                                      |                               | Generic Fly Ash                                                     | 0                             | 14.7                           | 0.0   |
| • Water reducing & Air-e                             | entraining admixtures         | Generic Slag Cement                                                 | 140                           | 146.6                          | 20.5  |
| Water reducing a / in c                              |                               | Generic Crushed Stone Course Aggregate                              | 1,046                         | 4.6                            | 4.8   |
| • Evansville TI +40%                                 | Slag = - 34% vs Baseline      | Generic Concrerte Sand Fine Aggregate                               | 791                           | 2.8                            | 2.2   |
|                                                      |                               | Water                                                               | 156                           | 0.0                            | 0.0   |
| <ul> <li>Note inclusion of A1 – A</li> </ul>         | A3 LCA Modules                | Generic Water Reducing Admixture                                    | 0.80                          | 1880.6                         | 1.5   |
| GWP for A1                                           | 205.7                         | Generic Air-Entrainer                                               | 0.05                          | 524.7                          | 0.03  |
|                                                      |                               | Raw Materials Prod                                                  | uction CO <sub>2</sub> I      | ootprint - Total A1            | 205.7 |
| GWP for A2                                           | 34.1                          |                                                                     |                               |                                |       |
| GWP for A3                                           | 9.4                           | Material Transport to Concrete Plant A2                             |                               |                                |       |
|                                                      |                               | Summary for Transport to BC Read                                    | dy Mix CO₂ I                  | 34.1                           |       |
| Mix GWP Total                                        | 249.2 CO2 eq.                 |                                                                     |                               |                                |       |
|                                                      |                               | Concrete Manufacturing @ RM Plant                                   |                               |                                |       |

| Counting Carbon Emissions Accounting for Concrete GWP with EPD De                                       | ata for Evansville Portland T                                                  | ype I (                       | or III in M                    | ix            |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|--------------------------------|---------------|
| Apply GWP values to Generic Mix for all mix componer                                                    | nts                                                                            |                               |                                |               |
| • Binder is 175 kg/m <sup>3</sup> Evansville Type I or Type III                                         | Generic Concrete Mix Global Warming Potential A1                               | - A3 with 50                  | 0% Slag Cement SC              | м             |
| <ul> <li>+ 175 kg/m<sup>3</sup> "Generic" Slag as SCM</li> </ul>                                        | Generic Concrete Mix Raw Materials + Actual<br>Cement GWP Values A1            | Quantity<br>kg/m <sup>3</sup> | GWP / Metric ton<br>(1,000 kg) | GWP in Mix    |
| "Generic" course and fine aggregate                                                                     | Heidelberg Materials Evansville Type I or III +50% Slag SCM<br>Generic Fly Ash | 175<br>0                      | 841<br>14.7                    | 147.2<br>0.0  |
| • Water reducing & Air-entraining admixtures                                                            | Generic Slag Cement Generic Crushed Stone Course Aggregate                     | <b>175</b><br>1.046           | <b>146.6</b><br>4.6            | 25.7<br>4.8   |
| • Evansville TI +50% Slag = - 40% vs Baseline                                                           | Generic Concrerte Sand Fine Aggregate                                          | 791                           | 2.8                            | 2.2           |
| • Note inclusion of A1 – A3 LCA Modules                                                                 | Water<br>Generic Water Reducing Admixture                                      | 156<br>0.80                   | 0.0 1880.6                     | 0.0           |
| • GWP for A1 181.4                                                                                      | Generic Air-Entrainer Raw Materials Prod                                       | 0.05                          | 524.7                          | 0.03<br>181.4 |
| • GWP for A2 34.1                                                                                       |                                                                                |                               |                                | 101.4         |
| • GWP for A3                                                                                            | Material Transport to Concrete Plant A2                                        |                               |                                |               |
| Mix GWP Total <b>224.9 CO2 eq.</b> *                                                                    | Summary for Transport to BC Rea                                                | dy Mix CO <sub>2</sub> F      | ootprint - Total A2            | 34.1          |
| *Saves ~ 150 kg/m³ of CO $_2$ eq. vs. Industry Avg. Portland Cement Mix                                 | Concrete Manufacturing @ RM Plant<br>Material Handling, Batching & Misc. Oper  | rations CO <sub>2</sub> F     | ootprint - Total A3            | 9.4           |
| SCM, Aggregate and Admixture Data via FHWA<br>Heidelberg Materials Report No. FHWA-HIF-22-032, LCA Pave |                                                                                | Тс                            | otal A1 + A2 + A3              | 224.9         |

### Slag Cement Delivers

### Waldorf Astoria Project Miami

- Biscayne Blvd. 36-hour+ pour over weekend
- Transportation competing with Justin Timberlake concert
- Waldorf Astoria Hotel & Residences, 300 Biscayne Blvd.
- 13,500 CY of concrete





Heidelberg Materials

7/17/2024 NRMCA Live Learning | Concrete Innovation Webinar | L. Rowland



### 29

# Slag Cement Delivers Waldorf Astoria Project Miami 13,500 CY of concrete, 36-hour+ pour over weekend

- 850# of total cementitious 60% Slag Mix
- 3,123 M tons slag used = 2,400 M tons  $CO_2$  saved
- Avoided emissions equivalent to...

Heidelberg Materials

- Planting more than 40,400 trees to maturity for 10-years
- Removing 575 vehicles from the road for a year

7/17/2024

• 272,800 gallons of gasoline burned



# Using Slag Cement to Decarbonize Concrete

- Slag Cement comes from a primary iron production
- Quenching produces granules which are ground to cement fineness
- Slag Cement can be supplied as an SCM or in Blended Cements
- It densifies concrete and typically has slower strength gain
- Slag mixes ultimately stronger so often used in high-performance mixes
- Because it is a waste product it has very low embodied carbon
- Embodied carbon and other impacts are accounted for in EPDs
- Heidelberg Materials is committed to being the leader in decarbonizing the cement and concrete sectors
- Slag is a powerful tool in producing Low Carbon Concrete







# **Questions?**

Larry Rowland Heidelberg Materials Sustainability Market Manager Larry.Rowland@HeidelbergMaterials.com Mobile: 610-462-4250



