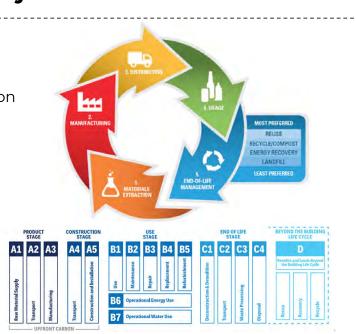
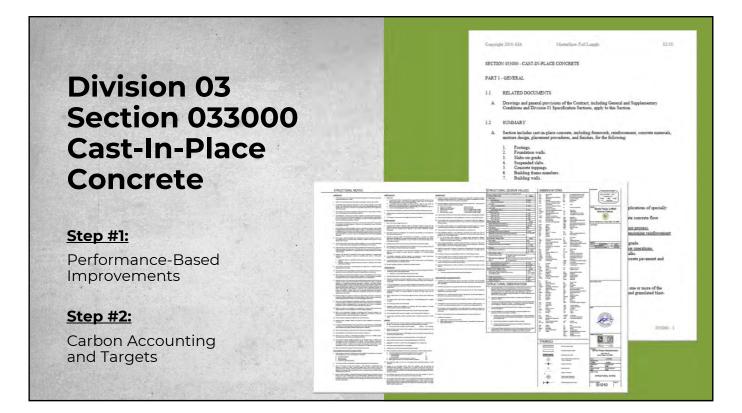
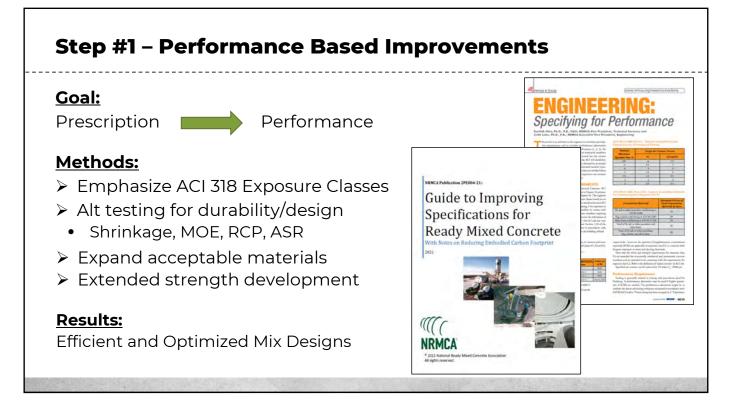



## How to Quantify and Specify Carbon

### Historically:


- > Prescriptive measures
- "maximum cement content"
- "minimum SCM content"
- > Byproduct:
- Not producer-specific solutions
- Inefficient mix design
- Increase in cost





## How to Quantify and Specify Carbon

### Present Day:

- ➢ Life Cycle Assessment
- Benchmark vs. Proposed Low Carbon
- Concrete-scope embodied carbon
  - → Project-wide Whole Building LCA
- > Byproduct:
- Quantifiable reductions
- Producer specific solutions
- Flexibility in execution







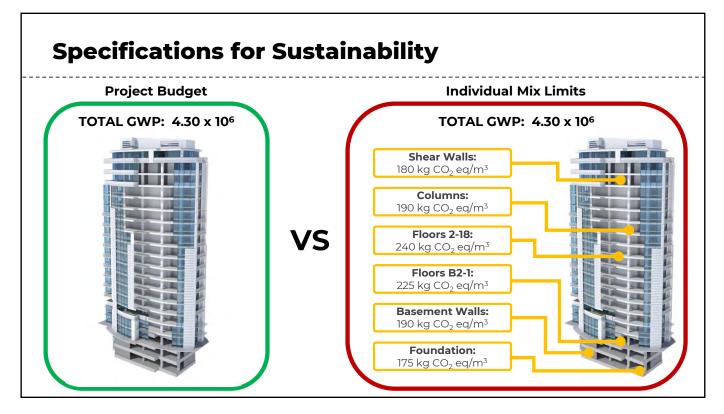


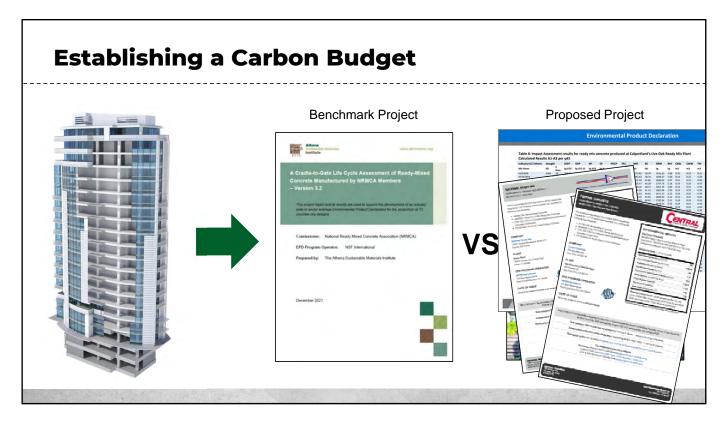
## Step #2 – Carbon Accounting and Targets

#### <u>Goal:</u>

Trigger the use of low carbon materials

### Methods:


- ➢ Collect EPDs
- Establish a Carbon Budget


#### **Results:**

- > Procurement of low carbon concrete
- Flexibility for the contractor and producer
- Buffer for as-built conditions

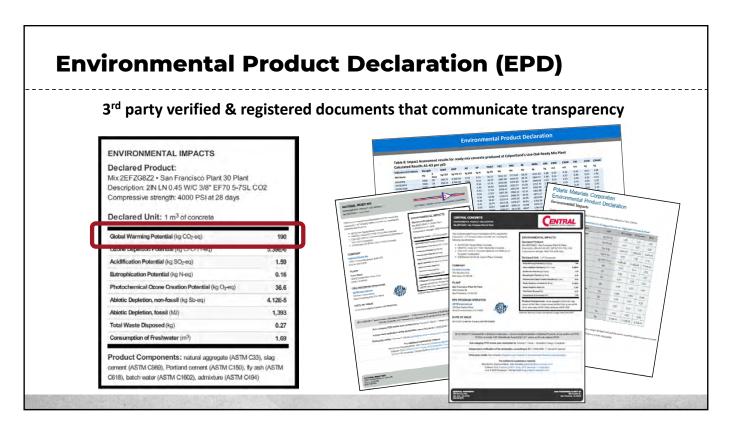


|                            |        | Dur | abilit | y Expe | osure | Specified            | Max w/cm or                | Nom. max       | Air     | Slump/        | ci i i            | The    | Max. GWP                      |
|----------------------------|--------|-----|--------|--------|-------|----------------------|----------------------------|----------------|---------|---------------|-------------------|--------|-------------------------------|
| Member                     | Mix ID | F   | s      | w      | С     | Strength,<br>f', psi | Performance<br>Alternative | Aggregate, in. | Content | Slump<br>Flow | Chloride<br>Limit | Limits | (kg/yd3<br>CO <sub>2</sub> e) |
| Footings                   |        |     |        |        |       |                      |                            |                |         |               |                   |        | 250                           |
| Foundation Walls           |        |     |        |        |       |                      |                            |                |         |               |                   |        | 250                           |
| Slabs-on-grade             |        |     |        |        |       |                      |                            |                |         |               | 1                 |        | 250                           |
| Exterior slabs             |        |     |        |        |       |                      |                            |                |         |               |                   |        |                               |
| Suspended slabs (interior) |        |     |        |        |       |                      |                            |                |         |               |                   |        | 3 0                           |
| Suspended slabs (exterior) |        |     |        |        |       |                      |                            |                |         |               |                   |        | A                             |
| Frame members              |        | 1   |        |        |       |                      |                            |                |         |               |                   | -      | 300                           |
| Columns (interior)         |        |     |        |        |       |                      |                            |                |         |               |                   |        | 300                           |
| Columns (exterior)         |        |     |        |        |       |                      |                            |                |         |               |                   |        | 300                           |
| Walls (interior)           |        |     |        |        | 1     |                      |                            |                |         |               |                   | -      | 250                           |
| Concrete toppings          |        |     |        |        |       |                      |                            |                |         |               |                   |        | 250                           |





# 2023 Concrete Innovations www.concreteinnovations.com

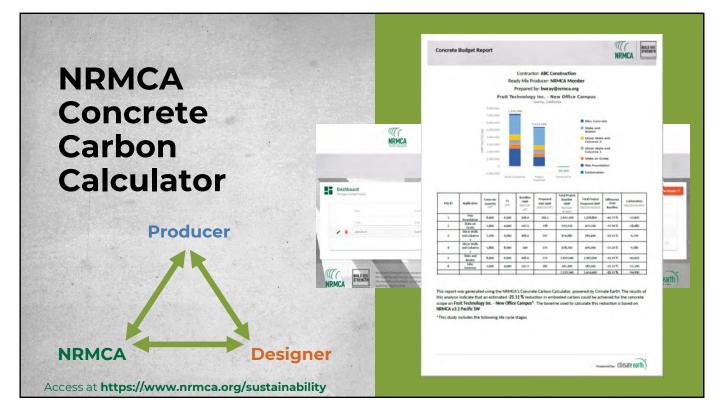

Life Cycle Analy Shear Walls: ( yd<sup>3</sup> ) x ( GWP ) = Impact Columns: ( yd<sup>3</sup>) x ( GWP ) = Impact and the second second Floors 2-18: ( yd<sup>3</sup> ) x ( GWP ) = Impact Floors B2-1: ( yd<sup>3</sup> ) x ( GWP ) = Impact Basement Walls: ( yd<sup>3</sup>) x ( GWP ) = Impact and the second sec Mat Foundation: ( yd<sup>3</sup>) x ( GWP ) = Impact **Project Impact** 

## **Estimating Quantities and Properties**

| Concrete Element | Concrete<br>Volume (yd³) | Benchmark<br>Mixes (benchmark)* | Proposed Mixes<br>(IW-EPD)*               |
|------------------|--------------------------|---------------------------------|-------------------------------------------|
| Shear Walls      | 7,630                    | 6,000 psi                       | <b>6,000 psi</b><br>30% slag, 20% fly ash |
| Columns          | 366                      | 8,000 psi                       | <b>8,000 psi</b><br>40% fly ash           |
| Floors 2-18      | 4,533                    | 5,000 psi                       | <b>5,000 psi</b><br>30% slag              |
| Floors B2-1      | 1,067                    | 5,000 psi                       | <b>5,000 psi</b><br>40% fly ash           |
| Basement Walls   | 444                      | 5,000 psi                       | <b>5,000 psi</b><br>30% slag, 20% fly ash |
| Foundation       | 3,844                    | 6,000 psi                       | <b>6,000 psi</b><br>40% slag, 30% fly ash |

Г

| Athene                  |                      |                       | D-1 I MRMC<br>D-1 I MRMC<br>There is interest<br>in the second second second<br>in the second seco | Karnel Home<br>A. U.S. National<br>Manufacture Driverson | = 1      | ten d    | (Sale II) v | na Consult III or Fight<br>MICA C.R. (Screen IIA Scenario (pr. 5<br>10 a) 2014 - 1 (2017) | depand<br>1 administration 1 administ | ant I form I and |
|-------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------|----------|-------------|-------------------------------------------------------------------------------------------|---------------------------------------|------------------|
| Results Tab<br>Strength | psi @28 days         | Results (per<br>2,500 | cubic yard)<br>3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,000                                                    | 5,000    | 6.000    | 8.000       | 3000LW                                                                                    | 4000LW                                | 5000LW           |
|                         | ory Impact Indicator | 2,500                 | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,000                                                    | 3,000    | 0,000    | 8,000       | 3000200                                                                                   | 4000200                               | 3000200          |
| GWP                     | kg CO2e              | 183.29                | 201.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 240.22                                                   | 289.03   | 305.26   | 360.51      | 395.35                                                                                    | 437.90                                | 480.10           |
| ODP                     | kg CFC11e            | 5.91E-06              | 6.36E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.32E-06                                                 | 8.52E-06 | 8.96E-06 | 1.03E-05    | 1.47E-05                                                                                  | 1.58E-05                              | 1.69E-05         |
| AP                      | kg SO2e              | 0.67                  | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81                                                     | 0.93     | 0.98     | 1.12        | 2.10                                                                                      | 2.22                                  | 2.33             |
| EP                      | kg Ne                | 0.24                  | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30                                                     | 0.36     | 0.37     | 0.44        | 0.69                                                                                      | 0.74                                  | 0.79             |
| SFP                     | kg O3e               | 14.31                 | 15.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.18                                                    | 19.61    | 20.57    | 23.34       | 29.65                                                                                     | 31.81                                 | 33.89            |
| ADPf                    | MJ, NCV              | 400.61                | 412.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 442.07                                                   | 482.50   | 503.70   | 548.75      | 2,225.23                                                                                  | 2,290.96                              | 2,344.41         |
| ADPe                    | kg Sbe               | 1.28E-04              | 1.30E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.36E-04                                                 | 1.42E-04 | 1.48E-04 | 1.55E-04    | 1.71E-04                                                                                  | 1.79E-04                              | 1.87E-04         |
|                         |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |          |          |             |                                                                                           |                                       |                  |




| roduct<br>eclarati |                        | NRMCA             |                | Section 2021 to convert an<br>Section of<br>Conference for<br>Alternative Automation |                     | How to Uter This<br>Received Annual Sectors and Annual |                     | -                   |                     | ANTINATIAL CONTINUES:<br>NY SANA DI ANTI<br>IV. BODY SANA<br>Lar BOD STORE<br>Lar BOD STORE<br>DE STORE DE |                        |
|--------------------|------------------------|-------------------|----------------|--------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------|------------------------|
| Table 10           | b. Summary Resul       | ts (A1-A3): 5001- | 6000 psi (34.5 | -41.4 MPa) RI                                                                        | MC product m        | ix design, per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cubic yard          | 1                   | Uni Jahran          |                                                                                                            | T                      |
|                    |                        | Minimum           | Maximum        | 5001-6000-<br>00-FA/SL                                                               | 5001-6000-<br>20-FA | 5001-6000-<br>30-FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5001-6000-<br>40-FA | 5001-6000-<br>30-SL | 5001-6000-<br>40-SL | 5001-6000-<br>50-SL                                                                                        | 5001-6000-<br>50-FA/SL |
| Core Mand          | atory Impact Indicator |                   |                | 1                                                                                    | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                   | 1                   |                     |                                                                                                            |                        |
| GWP                | kg CO2e                | 231.47            | 377.44         | 377.44                                                                               | 322.63              | 293.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 261.73              | 290.83              | 261.97              | 233.1                                                                                                      | 231.47                 |
| ODP                | kg CFC11e              | 6.50E-06          | 9.71E-06       | 9.16E-06                                                                             | 7.90E-06            | 7.22E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.50E-06            | 9.49E-06            | 9.60E-06            | 9.71E-06                                                                                                   | 0.246-00               |
| AP<br>EP           | kg SO2e<br>kg Ne       | 0.81              | 0.45           | 1.07<br>0.45                                                                         | 0.95                | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.81                | 1.08                | 0.34                | 1.10                                                                                                       | 0.97                   |
| SFP                | kg O3e                 | 17.76             | 23.30          | 22.81                                                                                | 20.42               | 19.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.76               | 23.10               | 23.20               | 23.30                                                                                                      | 20.73                  |
| ADPf               | MJ, NCV                | 503.28            | 575.31         | 575.31                                                                               | 541.31              | 522.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 503.28              | 550.69              | 542.48              | 534.27                                                                                                     | 515.21                 |
| ADPe               | kg Sbe                 | 1.21E-04          | 1.50E-04       | 1.50E-04                                                                             | 1.36E-04            | 1.29E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.21E-04            | 1.36E-04            | 1.31E-04            | 1.27E-04                                                                                                   | 1.22E-04               |
|                    |                        |                   |                |                                                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                     |                     |                                                                                                            |                        |

## Identifying Global Warming Potential

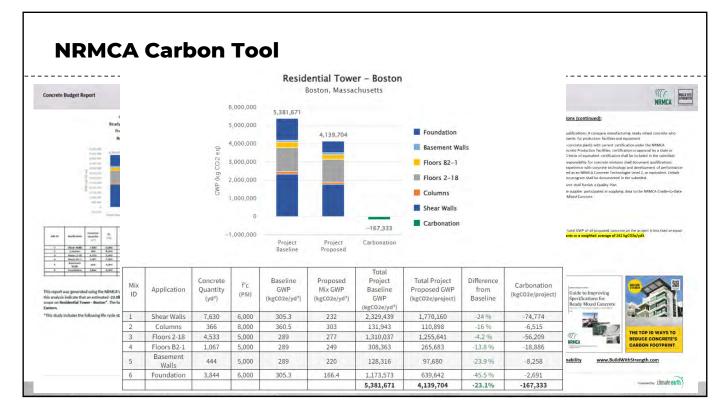
| Concrete Element | Concrete<br>Volume (yd³) | Benchmark Mixes<br>GWP (Eastern Region) | Proposed Mixes<br>GWP (IW-EPD)*      |
|------------------|--------------------------|-----------------------------------------|--------------------------------------|
| Shear Walls      | 7,630                    | 305                                     | <b>232</b><br>30% slag, 20% fly ash  |
| Columns          | 366                      | 361                                     | <b>303</b><br>40% fly ash            |
| Floors 2-18      | 4,533                    | 289                                     | <b>277</b><br>30% slag               |
| Floors B2-1      | 1,067                    | 289                                     | <b>249</b><br>40% fly ash            |
| Basement Walls   | 444                      | 289                                     | <b>220</b><br>30% slag, 20% fly ash  |
| Foundation       | 3,844                    | 305                                     | <b>166*</b><br>40% slag, 30% fly ash |

## 2023 Concrete Innovations www.concreteinnovations.com



| 5 | Project<br>Start New Project |                              |            |                            |               |  |  |  |  |  |  |
|---|------------------------------|------------------------------|------------|----------------------------|---------------|--|--|--|--|--|--|
|   | 1 Basic Information          | 2 Project Setting            | S.         | 3 Project Data             | Online Report |  |  |  |  |  |  |
| 1 | Project Basic Information    |                              |            |                            |               |  |  |  |  |  |  |
|   | - Name*                      | Description *<br>18 Story Cl |            | Project type *<br>Building | *             |  |  |  |  |  |  |
| 5 | Project Address              |                              |            |                            |               |  |  |  |  |  |  |
| ſ | _ Street<br>123 Main Street  | Boston                       | State *    | tts (MA)                   |               |  |  |  |  |  |  |
|   | 123 Main Street              | Boston                       | Massachuse | tts (MA) • 02114           |               |  |  |  |  |  |  |

| 5 | Project<br>Start New Project                    |                      | NRMCA Benchmarks v3.2                  | 1    |
|---|-------------------------------------------------|----------------------|----------------------------------------|------|
| - | Start New Project                               |                      | National                               |      |
|   |                                                 |                      | 8 Regions                              |      |
|   | Basic Information                               | 2 Project Settings   | GSA (General Services Administration)  | port |
|   |                                                 |                      | City of Portland                       |      |
|   | Basic Settings                                  |                      | CLF Baseline (Carbon Leadership Forum) | 5    |
|   | - Unit of Measure System *                      | Total Project Area * |                                        |      |
|   | imperial 👻                                      | 500000               |                                        | P    |
|   |                                                 |                      | More to be added in the future         |      |
|   | Carbon Budget Source Settings                   |                      |                                        |      |
|   | Source for carbon budget *                      |                      | Source for baseline *                  |      |
|   | I will use an industry or local policy baseline | • (i)                | NRMCA v3.2 Eastern                     | -    |

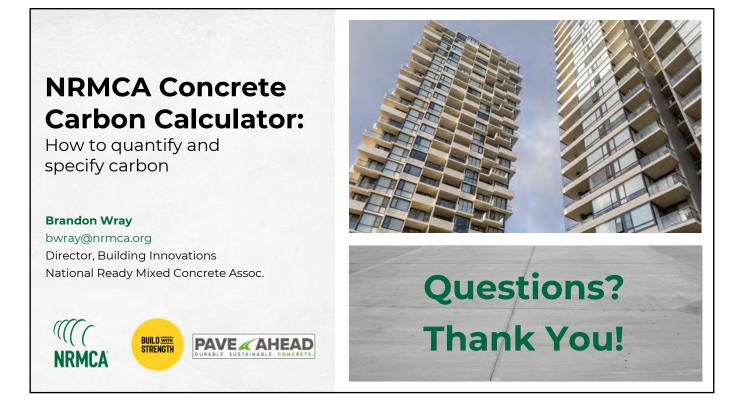

| <br>                          |        |                 |          |             |                                 |                                            |                                                 |                                           |                                          |                                           |                                                   |
|-------------------------------|--------|-----------------|----------|-------------|---------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------|
| \$<br>Project<br>Edit Project |        |                 |          |             |                                 |                                            |                                                 |                                           |                                          |                                           |                                                   |
| Basic Inform                  | nation |                 |          | Project Set | tings                           |                                            |                                                 | 3 Project Dat                             | а                                        |                                           | Online Report                                     |
|                               | Mix ID | Strength<br>PSI | Mix Type | Application | Total Volume<br>yd <sup>a</sup> | Proposed Mix GWP<br>kgC02e/yd <sup>3</sup> | Carbonation<br>Factor<br>kgC02e/yd <sup>a</sup> | Baseline<br>GWP<br>kgCO2e/yd <sup>3</sup> | Baseline GWP<br>Budget<br>kgCO2e/project | Proposed Project<br>GWP<br>kgC02e/project | Total Achievable<br>Carbonation<br>kgCO2e/project |
|                               | 1      | 6000            | Norm 🔻   | Shear Walls | 7630                            | 232                                        | -7.6                                            | 305.3                                     | 2,329,439                                | 1,770,160                                 | -57,988                                           |
|                               | 2      | 8000            | Norm 🔻   | Columns     | 366                             | 303                                        | -17.8                                           | 360.5                                     | 131,943                                  | 110,898                                   | -6,515                                            |
|                               | 3      | 5000            | Norm +   | Floors 2-18 | 4533                            | 277                                        | -12.4                                           | 289                                       | 1,310,037                                | 1,255,641                                 | -56,209                                           |
| 1                             | 4      | 5000            | Norm •   | Floors B2-1 | 1067                            | 249                                        | -17.7                                           | 289                                       | 308,363                                  | 265,683                                   | -18,886                                           |
|                               | 5      | 5000            | Norm +   | Basement V  | 444                             | 220                                        | .18.6                                           | 289                                       | 128,316                                  | 97,680                                    | -8,258                                            |
| 1                             | 6      | 6000            | Norm     | Foundation  | 3844                            | 166.4                                      | D.7 🖬                                           | 305.3                                     | 1,173,573                                | 639,642                                   | -2,691                                            |
|                               |        |                 |          |             | -                               |                                            | 8                                               |                                           |                                          |                                           |                                                   |

|                         |                                                                                                                                                                                                                                    | 1                                                        |          |       |                           |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------|-------|---------------------------|
| Project<br>Edit Project | Proposed Mix GWP for 'Foundation'                                                                                                                                                                                                  |                                                          |          |       |                           |
| 🖉 Basic Informa         | Important information                                                                                                                                                                                                              | Portland Limestone Cement (Type IL)/ASTM C595 - Domestic | - 282 -  | LB    | Online Repor              |
|                         | This result is NOT an EPD. This GWP was<br>calculated using the same LCI data sources as<br>prescribed in Table A1 of the PCR for<br>Concrete, NSF International, August 2021                                                      | Slag Cement/ASTM C989 - Imported                         | - 170    | LB    | evable<br>Ition<br>roject |
| T                       | v2.1. A3 is assumed to be 9.04 kg CO2eq/m3<br>per NRMCA's Benchmark Report v3.2. This<br>GWP is strictly an estimate and is based on<br>industry averages, regional data, and average<br>transportation impacts and should be used | i Fly Ash                                                | -        | LB    | 5                         |
|                         | for estimation purposes only. For more<br>accurate results, it is recommended that a<br>Type III Third-Party Verified Product Specific<br>EPD be developed.                                                                        | Crushed Coarse Aggregate/ Crushed Fine Aggregate         | • 1650 • | LB    | )9                        |
| -                       | For a more accurate plant specific estimate,<br>use your EPD tool provider's EPD estimator.                                                                                                                                        | Natural Fine Aggregate                                   | - 1400   | LB    | 8                         |
|                         |                                                                                                                                                                                                                                    | Plasticizer and Superplasticizer                         | - 24     | FL.OZ | 1                         |

| ŝ | Project<br>Edit Project | -      |                 |          |             |                                 |                                            |                                                        |                                           |                                          |                                           |                                                   |
|---|-------------------------|--------|-----------------|----------|-------------|---------------------------------|--------------------------------------------|--------------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------|
|   | Basic Inform            | ation  |                 |          | Project Set | tings                           |                                            |                                                        | 3 Project Dat                             | a                                        |                                           | Online Report                                     |
|   |                         | Mix ID | Strength<br>PSI | Mix Type | Application | Total Volume<br>yd <sup>a</sup> | Proposed Mix CV/F<br>kgC02e/y <sup>3</sup> | Carbonation<br>Factor<br><b>kgC02e/yd</b> <sup>3</sup> | taseline<br>GWP<br>kg O2e/yd <sup>3</sup> | Baseline GWP<br>Budget<br>kgCO2e/project | Proposed Project<br>GWP<br>kgCO2e/project | Total Achievable<br>Carbonation<br>kgCO2e/project |
|   |                         | 1      | 6000            | Norm •   | Shear Walls | 7630                            | 232                                        | -7.6                                                   | 305.3                                     | 2,329,439                                | 1,770,160                                 | -57,988                                           |
|   |                         | 2      | 8000            | Norm 🔻   | Columns     | 366                             | 303 🛃                                      | -17.8                                                  | 360.5                                     | 131,943                                  | 110,898                                   | -6,515                                            |
|   |                         | 3      | 5000            | Norm +   | Floors 2-18 | 4533                            | 277                                        | -12.4                                                  | 289                                       | 1,310,037                                | 1,255,641                                 | -56,209                                           |
|   | 1.                      | 4      | 5000            | Norm •   | Floors B2-1 | 1067                            | 249                                        | -17.7                                                  | 289                                       | 308,363                                  | 265,683                                   | -18,886                                           |
|   |                         | 5      | 5000            | Norm *   | Basement V  | 444                             | 220                                        | -18.6                                                  | 289                                       | 128,316                                  | 97,680                                    | -8,258                                            |
|   | 1.00                    | 6      | 6000            | Norm 👻   | Foundation  | 3844                            | 166.4                                      | -0.7                                                   | 305.3                                     | 1,173,573                                | 639,642                                   | -2,691                                            |
|   |                         |        |                 |          |             |                                 | E                                          | 8                                                      |                                           |                                          |                                           |                                                   |

|          |             | Carb     |                     |                                                                                |                                                       |                                      |                                           |                                                   |
|----------|-------------|----------|---------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------------|
| Projec   | t           |          |                     |                                                                                |                                                       |                                      |                                           |                                                   |
| Basic In | formation   |          |                     | Carbonation Factor                                                             |                                                       |                                      |                                           | Online Report                                     |
|          | Mix (D)     | Strength | Міх Туре            | Building Interior - Structural elements Reference Service Life (RSL) (years) * | Exposed surface (yd <sup>1</sup> /yd <sup>1</sup> ) * | seline GWP<br>Budget<br>CO2e/project | Proposed Project<br>GWP<br>kgC02e/project | Total Achievable<br>Carbonation<br>kgCO2e/project |
|          | 1           | 6000     | Norm                | 60                                                                             | 5.5                                                   | 2,329,439                            | 1,770,160                                 | -57,988                                           |
|          | 2 8000 Norm |          | Exposure category * | Cement content (ib/vd <sup>8</sup> ) =                                         | 131,943                                               | 110,898                              | -6,515                                    |                                                   |
|          | 3           | 5000     | Norm                |                                                                                |                                                       | 1,310,037                            | 1,255,641                                 | -56,209                                           |
|          | 4           |          |                     | Percent clinker in cement (%) *                                                | Percent limestone in concrete (%) *                   | 308,363                              | 265,683                                   | 18,886                                            |
|          | 5           |          |                     | Percent silica fume in concrete (%) * Percent fly ash in concrete (%) *        |                                                       | 128,316                              | 97,680                                    | -8,258                                            |
| 1        | 6           | 6000     | Norm                |                                                                                |                                                       | 1,173,573                            | 639,642                                   | -2,691                                            |
|          |             |          | 1                   |                                                                                | Cancel Calculate                                      | 1000                                 |                                           |                                                   |

| - | -                       |        |                 |          |              |                                 |                                           |                                                   | _                                         | -                                        |                                           |                                                   |
|---|-------------------------|--------|-----------------|----------|--------------|---------------------------------|-------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------|
| 5 | Project<br>Edit Project |        |                 |          |              |                                 |                                           |                                                   |                                           |                                          |                                           |                                                   |
|   | Basic Inform            | nation |                 |          | Project Sett | ings                            |                                           |                                                   | 3 Project Da                              | a                                        |                                           | Online Report                                     |
|   |                         | Mix ID | Strength<br>PSI | Mix Type | Application  | Total Volume<br>yd <sup>3</sup> | Proposed Mix GW<br>kgC02e/yd <sup>3</sup> | P Carbonation<br>Factor<br>kgC02e/yd <sup>3</sup> | Baseline<br>GWP<br>kgCO2e/yd <sup>3</sup> | Baseline GWP<br>Budget<br>kgCO2e/project | Proposed Project<br>GWP<br>kgC02e/project | Total Achievable<br>Carbonation<br>kgCO2e/project |
|   |                         | 1      | 6000            | Norm 👻   | Shear Walls  | 7630                            | 232                                       | -7.6                                              | 305.3                                     | 2,329,439                                | 1,770,160                                 | -57,988                                           |
|   | 11                      | 2      | 8000            | Norm •   | Columns      | 366                             | 303                                       | -17.8                                             | 360.5                                     | 131,943                                  | 110,898                                   | -6,515                                            |
|   |                         | 3      | 5000            | Norm •   | Floors 2-18  | 4533                            | 277                                       | -12.4                                             | 289                                       | 1,310,037                                | 1,255,641                                 | -56,209                                           |
|   | 1.                      | 4      | 5000            | Norm •   | Floors B2-1  | 1067                            | 249                                       | -17.7                                             | 289                                       | 308,363                                  | 265,683                                   | -18,886                                           |
|   |                         | 5      | 5000            | Norm *   | Basement V   | 444                             | 220                                       | -18.6                                             | 289                                       | 128,316                                  | 97,680                                    | -8,258                                            |
|   | 1.                      | 6      | 6000            | Norm •   | Foundation   | 3844                            | 166.4                                     | -0.7                                              | 305.3                                     | 1,173,573                                | 639,642                                   | -2,691                                            |
|   |                         |        |                 |          |              |                                 | E                                         | E                                                 |                                           |                                          |                                           |                                                   |




## **Final Results**

| Project                                 | Project GWP<br>(kg) | Weighted<br>GWP (kg/yd³) | GWP<br>Reduction |
|-----------------------------------------|---------------------|--------------------------|------------------|
| Benchmark Mixes                         | 5,382,000           | 301                      | 0                |
| Proposed with Fly Ash<br>and Slag Mixes | 4,140,000           | 232                      | - 23%            |
| Establish Carbon Budget                 | 4,300,000           | 240                      | - 20%*           |

# 2023 Concrete Innovations www.concreteinnovations.com



