

Jointless Slab Design	
 Goal: Eliminate joints Reduce potential for curling and tensile stress (environment & load) Tensile reduction can include shrinkage reduction 	The Curl-Free Evolution of Concrete
 Jointless Design: 	MEGASLAB
 Combination of materials formulated to reduce: Shrinkage Curl Materials may include: Admixtures Specialty cements Fibers 	PRIMX
	PAVE AHEAD
17	© 2023 National Ready Mixed Concrete Association

	Innovative (Blended) Cements: Going Beyond ASTM C150					
ASTM C595 Standard Specification for Blended Hydraulic Cements ASTM C595			ASTM C1157 Standard Performance Specification for Hydraulic Cement ASTM C1157			
Туре	Description	Notes		Туре	Description	Notes
Type IL (X)	Portland-Limestone	Where X can be between		Type GU (X)	General Use	X is optional but may be designated as <u>R</u> for low reactivity with alkali- silica-reactive aggregates or <u>A</u> for air-entraining cement. <u>Performance tests may include:</u> Chemical analysis Fineness Expansion Initial set time Air content
Type IS (X)	Portland-Slag	Where X can be up to		Type HE (X)	High Early Strength	
1990 IS (X)	Cement	70% slag cement		Type MS (X)	Moderate Sulfate Resistance	
Type IP (X)	Portland-Pozzolan Cement	Where X can be up to 40% pozzolan (fly ash is the most common)		Type HS (X)	Moderate Sulfate Resistance	
Type IT (AX)(BX) Ternary Blended Cement	Where X can be up to 70% of pozzolan + limestone + slag, with		Type MH (X)	Moderate Heat of Hydration	Compressive strength Heat of hydration Sulfate resistance	
	Cement	Cement pozzolan being no more than 40% and limestone no more than 15%		Type LH (X)	Low Heat of Hydration	 ASR reactivity Early stiffening
22	1				1	DURABLE_SUSTAINABLE, CONCRETE_ © 2023 National Ready Mixed Concrete Associati

	Innovative (Blended) Cements: Going Beyond ASTM C150				
ASTM C595 Si	tandard Specification	for Blended Hydraulic Cements	ASTM C1157 St	andard Performance S	Specification for Hydraulic Cement
Туре	Description	Notes	Туре	Description	Notes
Type IL (X)	Portland-Limestone	Where X can be between	Type GU (X)	General Use	X is optional but may be designated as \underline{R} for low reactivity with alkali-
T	Portland-Slag	Where X can be up to	Type HE (X)	High Early Strength	silica-reactive aggregates or <u>A</u> for air-entraining cement. <u>Performance tests may include:</u> • Chemical analysis • Fineness • Expansion • Initial set time • Air content • Compressive strength • Heat of hydration • Sulfate resistance • ASR reactivity • Early stiffening
Type IS (X)	Cement	70% slag cement	Type MS (X)	Moderate Sulfate Resistance	
Type IP (X)	Portland-Pozzolan Cement	Where X can be up to 40% pozzolan (fly ash is the most common)	Type HS (X)	Moderate Sulfate Resistance	
	Ternary Blended	Where X can be up to 70% of pozzolan + limestone + slag, with	Type MH (X)	Moderate Heat of Hydration	
туретт (АХ)(ВХ)	Cement	Cement pozzolan being no more than 40% and limestone no more than 15%	Type LH (X)	Low Heat of Hydration	
23					DURABLE_ SUSTAINABLE. CONCRETE

Fibers				
 Properties Geometry Length (I) Diameter (d) Aspect ratio (I/d) Texture Straight Embossed Twisted Crimped Hooked-end Sinusoidal Material type 		 Types ASTM C1116: Classified as synthetic, steel, glass, or natural (Types I – IV) Synthetic (e.g., polypropylene, polyester, polyolefin) Micro Macro Steel Round Flat Other materials available 		
26	Macrofiber examples	DURABLE, SUSTAINABLE, CONCRETE, © 2023 National Ready Mixed Concrete Association		

Ultra-High Performance Concrete (UHPC)

- Manufacturer distributes the premix powder, fibers and admixtures to partners •
- Can use high carbon metallic fibers, stainless fibers, poly-vinyl alcohol (PVA) fibers or glass fibers •
- Improves strength and ductility •
- Less porous than conventional concrete
- More resistant to chlorides, acids, and sulfates •
- Has self-healing properties

32

©National Ready Mixed Concrete Association

BLE SUSTAINABLE. CONCRETE

Prescriptive vs. Performance Specifications				
Prescriptive	• <u>Performance</u>			
 Agency dictates how the material or product is formulated and constructed. 	 Agency identifies desired characteristics of the material or product. 			
 Based on past experiences. 	 Contractor controls how to 			
 Minimal/uncertain ability to 	provide those characteristics.			
innovate.	 Maximum ability to innovate. 			
 Requires agency to have proper manpower and skill set to provide oversight. 	 Reduced oversight burden on the agency. 			
- · · · · · · · · · · · · · · · · · · ·	PAVE			
37	© DURABLE, SUSTAINABLE, CONCRETE.			

Concrete Pavement Technology Center			Favily
Property	Test Method	Property	Test Method
Workability	AASHTO T 119: Slump test	Volume Change/Cracking	ASTM C157: Unrestrained drying shrinkage
	AASHTO TP 137: Box Test	Resistance	AASHTO T 334: Restrained shrinkage ring test
	AASHTO TP 129 :VKelly test		AASHTO T 336: Coefficient of thermal expansion
Air Content and Air- Void System Parameters	AASHTO T 152: Pressure meter	Chemical Deicer Resistance	AASHTO T 365: LT-DSC
	AASHTO TP 118: SAM meter	Transport Properties	AASHTO T 277: Rapid chloride penetrability
	ASTM C457: Microscopical evaluation of air voids		AASHTO T 358 or TP 119: Concrete resistivity
Strength	AASHTO T 97: Flexural strength	Aggregate Durability	AASHTO T 161: Aggregate freeze thaw resistance
	AASHTO T 22: Compressive strength		AASHTO R 80: Alkali-aggregate reactivity

Food Nutrition Label ~ Environmental Product Declaration **Nutrition Facts ENVIRONMENTAL IMPACTS Declared Product:** Serving Size 1/2 cup dry (40 g) Servings Per container Mix 45FN31C2C · Jeffco Plant Amount Per Serving Description: CDOT CLASS B/D/P LOW SLUMP Compressive strength: 4500 PSI at 28 days Calories from Fat 25 Calories 150 Declared Unit: 1 m³ of concrete % Daily Value* Total Fat 3 g 4% Saturated Fat 0.5 g Trans Fat 0 g Cholesterol 0 mg Sodium 0 mg Total Carbohydrate 27 g Dietary Fiber 4 g Supare 1 g Global Warming Potential (kg CO>-eg) 345 2% 0% Ozone Depletion Potential (kg CFC-11-eg) 8 20E-6 Acidification Potential (kg SO2-eq) 1.01 <u>9%</u> 15% Eutrophication Potential (kg N-eg) 0.39 Sugars 1 g Protein 5 g Photochemical Ozone Creation Potential (kg O3-eq) 22.4 Abiotic Depletion, non-fossil (kg Sb-eq) Vitamin A 7.02E-5 <u>0%</u> 0% <u>Vitamin C</u> Calcium Abiotic Depletion, fossil (MJ) 710 10% Iron *Percent Daily Values are based on a 2,000 calor Your daily values may be higher or lower dependence Total Waste Disposed (kg) 102 Consumption of Freshwater (m³) 3.24 Total Fat Sat Fat Cholesterol 65 g 20 g 300 n 2,400 300 g 25 g 80 g 25 g 300 mg 2,400 mg 375 g 30 g Product Components: natural aggregate (ASTM C33), Portland Cholestero. Sodium Total Carbohydrate Dietary Fiber cement (ASTM C150), batch water (ASTM C1602), fly ash (ASTM C618), admixture (ASTM C494), admixture (ASTM C260) 44

