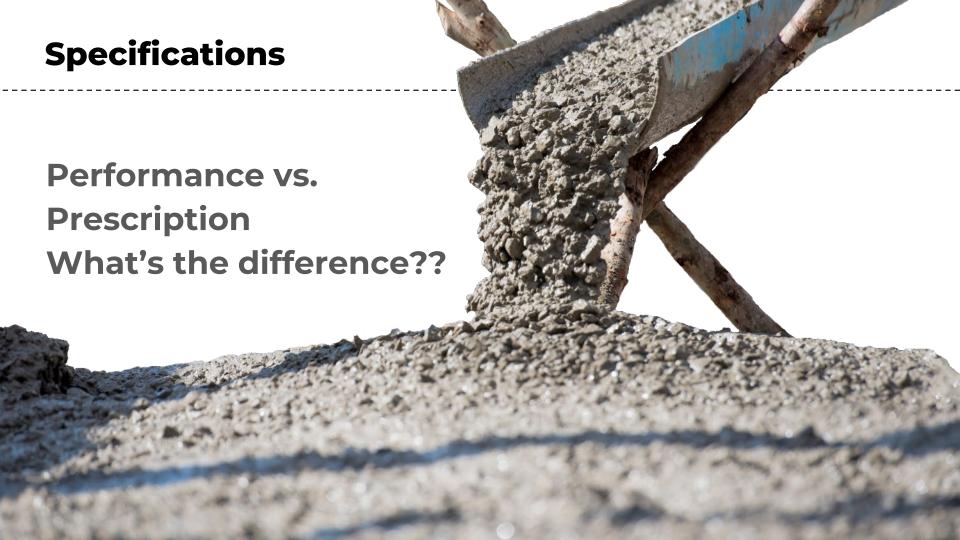
The Impact of Performance Specifications in Concrete

Brandon Wray


Senior Director, Building Innovations National Ready Mixed Concrete Assoc.

Prescriptive vs. Performance Design

Performance:

I want a chocolate cake

VS.

Prescriptive:

I want a chocolate cake with:

- Gold Medal All Purpose Flour
- Organic cocoa powder
- 3:1 flour-to-cocoa ratio
- 150g sugar

Prescriptive vs. Performance Design

Performance:

I want a 4000-psi concrete mix

VS.

Prescriptive:

I want a 4000-psi concrete mix with:

- C150 Cement
- 0.40 w/cm ratio
- Maximum 20% fly ash

Prescriptive Specifications

Types:

- 1. Durability and Code-based
 - > ACI 318 Exposure Classes
- 2. Specific properties desired
 - > Crack control
 - Finish quality
 - Mechanical properties
 - Plastic properties

Table 19.3.2.1—Requirements for concrete by exposure class (ACI 318-19)

	lab	ie 19.3.2.	1—Req	uirements for	concr	ete by exposur	e class (AC	1 318-19)	
Exposure Max Min f' Additional Requireme						nal Requirements		Limits on SCM	
	Class	w/cm (1,2)	psi		Į.	Air content		Littles on Scivi	
	F0	N/A 2500 N/A		N/A					
	F1	0.55	3500	Table 19.	.3.1.1 (Ta	able 19.3.3.3 for shot	crete)	N/A	
	F2	0.45	4500	Table 19.3.1.1 (Table 19.3.3.3 for shotcrete)		N/A			
	F3	0.40 (3)	5000 ⁽³⁾	Table 19.3.1.1 (Tab	le 19.3.3	3.3 for shotcrete)		26.4.2.2(b)	
				Cem	nentitio	ıs materials ⁽³⁾ - Type	s	Calcium chlorid	
				ASTM C150		ASTM C595	ASTM C1157	admixture	
	S0	N/A	2500	No type restriction	No	type restriction	No type restriction	No restriction	
	S1	0.50	4000	⁽⁵⁾⁽⁶⁾	Т	ypes with (MS) designation	MS	No restriction	
	S2	0.45	4500	V ⁽⁶⁾	Т	ypes with (HS) designation	HS	Not permitted	
S3	Opt. 1	0.45	4500	V plus pozzolan or slag cement ⁽⁷⁾	design	ypes with (HS) nation plus pozzolan r slag cement ⁽⁷⁾	HS plus pozzolan or slag cement (Not permitted	
	Opt. 2	0.45	5000	V ⁽⁸⁾	Т	ypes with (HS) designation	HS	Not permitted	
						None			
	W0	N/A	2500						
	W1	N/A	2500	26.4.2.2(d)					
	W2	0.50	4000	26.4.2.2(d)					
				Maximum water-soluble chloride ion (Cl ⁻) content in				Additional	
			concrete, percent by weight of cementitious materials (9,10)			provisions			
				Prestressed c	oncrete				
	CO	N/A	2500	1.00		0.06		None	
	C1	N/A	2500	0.30		0.06		None	
	C2	0.40	5000	0.15		0.06		Concrete cover (11)	

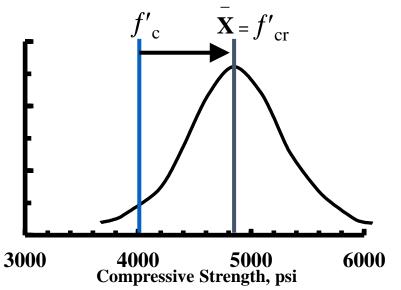
Examples of Prescriptive Requirements

- A. Cementitious Materials
 - 1. Cement: Cements shall conform to ASTM C150, Type I or Type II.

Complete chemical and physical analysis of the fly ash shall be submitted to the Architect prior to use. Concrete mixes proportioned with fly ash shall contain not less than 10% nor more than 20% by weight of cement to fly ash.

segregation or bleeding. The cementitious materials content of concrete shall be at least 675 pounds per cubic yard. Except that concrete to be placed by tremie the cementitious materials content shall be at least 725 pounds per cubic yard.

- C. Suspended Slabs, Interior Slabs-on-Grade: Proportion normal-weight concrete mixture
 - 1. Minimum Compressive Strength: 4000 psi, at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.35 with Air, .44 No Air.
- e. MAXIMUM WATER-CEMENT RATIO UNLESS NOTED OTHERWISE:
 - I) INTERIOR SLABS = 0.40
 - II) EXTERIOR SLABS = 0.50
 - III) OTHER = 0.45


Common Prescriptive Requirements

Prescriptive Requirement	Frequency Seen*	Sustainability	Performance	Cost
Restriction on SCM quantity	85%	\	\leftrightarrow	↑
Max w/cm (when not applicable)	73%	\	\leftrightarrow	↑
Minimum cementitious content	46%	\	\$	↑
Restriction on SCM type, characteristics	27%	\	\	↑
Restriction on aggregate type or characteristics	25%	\	\leftrightarrow	↑

^{*} ACI survey

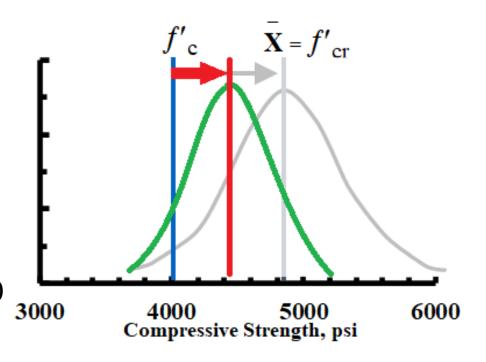
Concrete Strength and Embodied Carbon

Specified Strength ↑ Embodied Carbon ↑

Required Strength 1 Embodied Carbon 1

Environmental Product Declaration NRMCA MEMBER INDUSTRY-AVERAGE EPD FOR READY MIXED CONCRETE

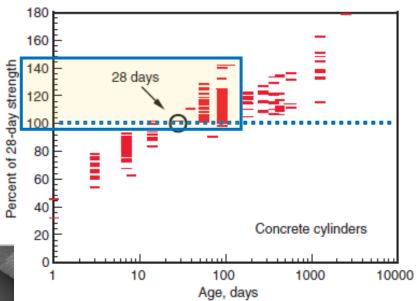
Strength ↑ 100 psi (0.7 MPa) GWP ↑ ~1.5 - 2.0%

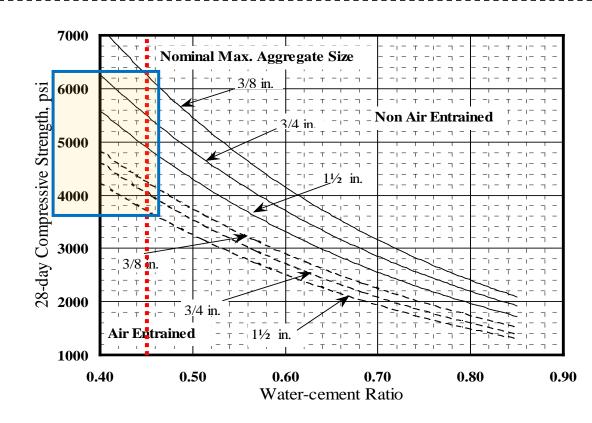

Impact of Prescriptive Specifications

Don't Limit Ingredients!

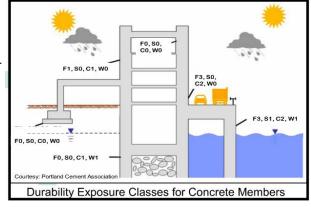
- X Maximum w/cm ratio
- X Minimum cement content
- X Cementitious types
- X Maximum SCM content

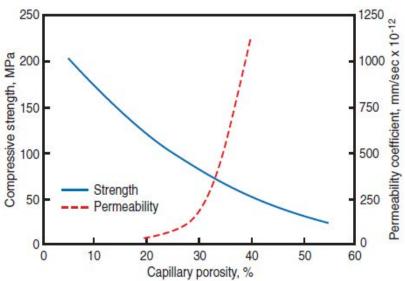
Instead...


- **✓** Exposure classification
- ✓ Broad raw material acceptance
- ✓ Alternative testing (shrinkage, etc.)
- ✓ Later age strengths


1. Later Age Strength

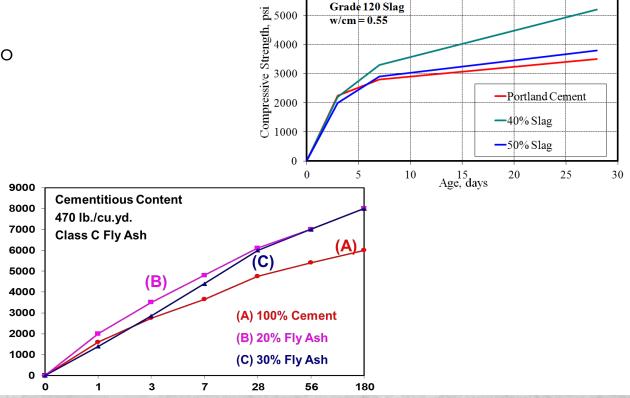
- 2. Strength and w/cm ratio
- 3. Permeability/Durability
- 4. Maximizing SCMs
- Reducing ExcessiveOverdesign





- 1. Later Age Strength
- 2. Strength and w/cm ratio
- 3. Permeability/Durability
- 4. Maximizing SCMs
- Reducing ExcessiveOverdesign

- 1. Later Age Strength
- 2. Strength and w/cm ratio
- 3. Permeability/Durability
- 4. Maximizing SCMs
- Reducing ExcessiveOverdesign

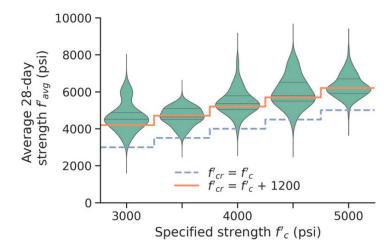


- 1. Later Age Strength
- 2. Strength and w/cm ratio
- 3. Permeability/Durability

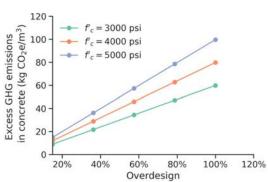
4. Maximizing SCMs

Reducing ExcessiveOverdesign

6000


- 1. Later Age Strength
- 2. Strength and w/cm ratio
- 3. Permeability/Durability
- 4. Maximizing SCMs
- 5. Reducing Excessive

Overdesign



CSHub.mit.edu

Performance Alternatives

Summary of Performance Alternatives

Durability Exposure Class/Property/MeNNumber	Prescriptive Requirement	Performance Alternative ASTM C672 Visual rating less than or equal to 2. Note that this test is not very repeatable or necessarily representative of field performance.		
F3	SCM limits (ACI 318)			
S1, S2, S3	Cementitious types	ASTM C1012 expansion criteria (ACI 318-14 Table 26.4.2.2(c)		
W1, C2	w/cm (ACI 318)	ASTM C1202 less than: 2500 coulombs (for W1) 1000 coulombs (for C2)		
Alkali Silica Reaction	Low alkali cement, SCM types and dosages, alkali content of concrete	ASTM C1567 using combination of cementitious materials used in the project – length change less than 0.10% at 16 days		
Shrinkage (W1, C2, Concrete Floors)	w/cm	ASTM C157 (7 days lime water curing and dried for 28 days – length change less than 0.05%		
Concrete Floors	w/cm, SCM limits, cement content, paste volume, aggregate grading/shape	Shrinkage – see above ASTM C403 initial setting time (contractor requirement) Test slab placement to ensure desired workability, finishability		

In accordance with ACI \$18.36 select when air content and comprovine strength for members assigned Expressiv Classes Ft, F2 and F3. (ACI SIR I c) Table 19.5.2.1 - Regularization for

Clan	Max m/m ²	Min / ,.	Additional Requirements Air Content	Limits
10.	NIA	2500	NA	3600
PH.	8.55	3500	Table 19.5.1.5	NO
12	0.45	4500	Table 19.3.1.1	NO
23	0.020	5000%	Table 19.5.1.1	26.623

The transment when limits in Table 14.3.1.1 do not apply to light-weight concent.
For plant concent, the transment arise shall be 0.47 and the management of vision be 4500 pst.

CACS 104.5 (C Yablo 19.3.3.3) - Youl Air Control for Concess

Airminal Maximum	Target Sir Cament, Persons				
regate Stim, in	***	12 and 15			
.3/6	- 6	75			
16	5.5	7			
76	- 3				
1	14.5	- 6			
116	.6.5	3.5			
2	4	- 3			
3	33	4.5			

(ACI 328-14) Table 28-8-2-2(b) - Limits on Committeess Materials for Committee Assigned in Exposure Class F1

Gracesinian Marcriale	Maximum Percent of Total Communicat Materials by Mass					
Fly ask or other possistent conforming to ASTM CGIB	25					
Slag comm conforming to ASTM CSRS	- 56					
Silica fame conforming to ASTM C1240	38					
Total of fly ash or other possesions and office forme	35					
Tired of fly sob or other pozoslaru. dag coment, and olica forme	10					

respectively. Limits on the quantity of supplementary committees materials (SCM) are applicable to exposure class F3, i.e. concrete with frequent exposure to water and deicing chemicals.

Note that the wires and arrength requirements for exposure class F3 are intended for anaturally minforced and presented concrete members and are immedial to be consistent with the requirements for exposure class C2. Refer to the definition of "plain concrete" in ACI 318. Specified air comme can be reduced by 1% when f >5000 psi.

Scaling is generally related to timing and procedures used for finishing. A performance alternative may be used if higher quantites of SCMs are readed. The performance obstructive might be to evaluate the delicer salt scaling resistance measured in accordance with ASTM C672 with a "Visual rating loss than or oped to 2." Experience

Spec Review: Performance Based Improvements

STRENGTH

3000

4000

5000

5000

4000

4500

4500

4500

AGGREGA

SIZE

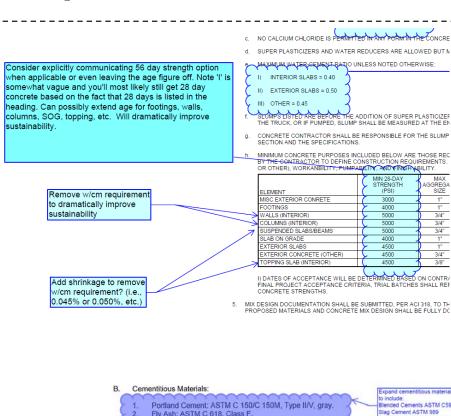
1"

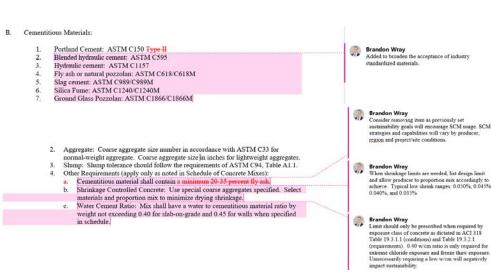
3/4"

3/4"

3/4"

1"


3/4"


3/8"

Expand cementitious materials

Blended Cements ASTM C595 Slag Cement ASTM 989

to include:

CONCRETE

- 1. All concrete shall have a minimum ultimate compressive strength (fc) as outlined below at 28 days. All concrete shall be regular weight (unless specifically noted otherwise) Only for ACI 318 A. Concrete for caissons, footings, and slab on grade: 3.000 psi w/c = 0.50 max. S1 exposure Maximum Fly Ash content shall be 15%, by weight, of total cementitious materials and shall Do not limit SCM content. conform to ASTM C618 Only code-based SCM limit is for ACI 318 F3 exposure 3. All concrete work shall comply with CBC Chapter 19A and ACI 318-14 and latest edition of ACI Manual of Concrete Practice. 4. Special Inspection (as required or specified) shall conform to CBC Chapter 17A Add acceptance of ASTM C595 blended cements
- Cement shall be Portland Cement Type II/V and shall conform to ASTM C150.

Performance-Focused Mix Table

Application	Strength (psi)	Exposure Classes	Maximum w/cm	Max. Aggregate Size (in)	Suggested GWP Target (kg/CO ² e/yd)	Notes
Footings, Grade Beams	4000 @ 56 days	S2	0.45	1-1/2		1
Foundation Walls	5000 @ 56 days	S2	0.45	1		1
Shear Walls, Columns	6000 @ 56 days			1		
Slabs-on-grade	4000 @ 28 days			1-1/2		3
Elevated Post- Tensioned Slabs	3000 @ 4 days 5000 @ 28 days					3
All other uses	4000			3/4		
	REQUIRED Weighted Average GWP (kg/CO ² e/yd)					

A. Notes:

- S2 exposure classification requires the use of sulfate resistant cement, C150 Type II/V or C595/C1157 with HS designation.
- C2 exposure classification requirement of 0.40 w/cm can be overridden with rapid chloride permeability values less than 1000 coulombs as tested per ASTM C1202.
- ASTM C157 shrinkage requirement of 0.050% after 7 days of moist curing followed by 21 days of air drying.
- Required weighted average GWP is taken across all concrete mix classes and their individual volumes, allowing suggested GWP to be exceeded for certain applications as long as overall GWP is achieved.

Performance Based Improvements

Goal:

Prescription

Performance

Methods:

- Emphasize ACI 318 Exposure Classes
- Alt testing for durability/design
 - ✓ Shrinkage, MOE, RCP, ASR
- Expand acceptable materials
- Extended strength development

Results:

- Efficient and Optimized Mix Designs
- Optimal cost and performance

The Impact of Prescriptive Specs

CONCRETE

Concrete strength: 3000 psi @ 28 days (Designed for 2500 psi)

Minimum cement content: 5.7 sacks per yard

Maximum water-cement ratio: 0.43 - max water to cement ratio

Concrete materials:

a) Cement: Portland Type II, ASTM C150.

Designed:

- 2500 psi
- Estimated GWP: 135 kg/CO2e/yd

Prescriptive additions:

- +500 psi
- 5.7 sacks cement per yard
- 0.43 w/cm
- C150 Type II/V only

Installed:

- 5000 psi
- Estimated GWP: 358 kg/CO2e/yd

+200% Overdesign

+265% Carbon

+++ Cost

Post-Mortem Quote: "Concrete is expensive and high carbon!"

The Value of Performance Specs

Example:

Prescriptive Mixes:

Mix	Application	Strength	Prescription	GWP _{Benchmark}	GWP _{Supplied}	Delta
1	Foundations	5000 psi @ 28 days	0.40 w/cm, 30% max SCM	289	293	+ 1.4%
2	Slabs	4000 psi @ 28 days	0.45 w/cm, 611 lbs cementitious, 20% max SCM	247	307	+ 24.3%
3	Columns/Walls	6000 psi @ 28 days	0.45 w/cm, C150 Cement, 30% max SCM	306	293	<mark>- 4.2%</mark>

Performance Focused Mixes:

Mix	Application	Strength	Prescription	GWP _{Benchmark}	GWP _{Supplied}	Delta
1	Foundations	5000 psi @ 56 days	Exposure S2 (0.45 w/cm)	289	166	- 42.6%
2	Slabs	4000 psi @ 28 days	Max Shrinkage 0.045%	247	206	- 16.6%
3	Columns/Walls	6000 psi @ 56 days	None	306	220	- 28.1%

Discussion

How does your firm manage project specifications? How are they reviewed and updated?

What checks and balances can be implemented to ensure efficient and constructible specifications?

How can you achieve low carbon concrete without prescriptively impacting mix designs? (i.e., must use xx% SCM)

In what ways can risk be mitigated and alignment with code be ensured?

The Impact of Performance Specifications in Concrete

Brandon Wray

Senior Director, Building Innovations bwray@nrmca.org

